Mass-Mass Practice (\#3)

and related topics such as mass \rightarrow mol and $\mathrm{mol} \rightarrow$ mol, from ChemTeam.com
The boldface problems are suggested.
$\underline{4} \mathrm{FeCr}_{2} \mathrm{O}_{7}+\underline{8} \mathrm{~K}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \underline{\mathbf{2}} \mathrm{Fe}_{2} \mathrm{O}_{3}+\underline{8} \mathrm{~K}_{2} \mathrm{CrO}_{4}+\underline{8} \mathrm{CO}_{2}$

1) How many grams of $\mathrm{FeCr}_{2} \mathrm{O}_{7}$ are required to produce 44.0 g of CO_{2} ?
2) How many grams of O_{2} are required to produce 100.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
3) If 300.0 g of $\mathrm{FeCr}_{2} \mathrm{O}_{7}$ react, how many g of O_{2} will be consumed?
4) How many g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will be produced from 300.0 g of $\mathrm{FeCr}_{2} \mathrm{O}_{7}$?
5) How many grams of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ are formed per gram (exactly 1 g) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ used?
$\mathbf{S}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{S O}_{\mathbf{2}}$
6) How many grams of sulfur must be burned to give 100.0 g of SO_{2} ?
7) How many grams of oxygen will be required for the above reaction, using the data in question 6 ?
$\underline{\mathbf{6}} \mathrm{NaOH}+\underline{\mathbf{2}} \mathrm{Al} \rightarrow \underline{\mathbf{2}} \mathrm{Na}_{3} \mathrm{AlO}_{3}+\underline{\mathbf{3}} \mathbf{H}_{2}$
8) How much aluminum, in grams, is required to produce 17.5 g of hydrogen?
9) How much $\mathrm{Na}_{3} \mathrm{AlO}_{3}$, in g , can be formed from 165.0 g of sodium hydroxide?
10) How many moles of NaOH are required to produce 3 g of hydrogen?
11) How many mol of hydrogen can be prepared from 1 gram of aluminum?

$\mathrm{BaO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

12) How much BaSO_{4}, in g , can be formed from 196.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
13) If 81.00 g of water is formed during this reaction, how much BaO , in g , was used?
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$
14) 78.00 g of NaCl should produce how many grams of AgCl ?
15) How much AgCl , in grams, can be produced from 107.0 g of AgNO_{3} ?
$\mathrm{B}_{2} \mathrm{O}_{3}+\underline{\mathbf{3}} \mathbf{M g} \rightarrow \underline{\mathbf{3}} \mathbf{M g O}+\underline{\mathbf{2}} \mathrm{B}$
16) How much boron, in grams, can be obtained from 10.00 grams of $\mathrm{B}_{2} \mathrm{O}_{3}$?
17) How much magnesium, in g , is required to produce $\mathbf{4 0 0 . 0}$ grams of boron?
$\mathbf{S n O}_{2}+\mathbf{C} \rightarrow \mathbf{S n}+\mathbf{C O}_{\mathbf{2}}$
18) How many grams of CO_{2} are formed when 1.00 gram of tin is produced?
19) How much SnO_{2} (grams) is required to produce 6.00 grams of tin?
20) How much tin (in grams) is produced per gram (exactly 1 gram) of carbon used?
$\underline{\mathbf{2}} \mathbf{K M n O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Mn}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}$
21) How many moles of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ can be formed from 196.0 g of KMnO_{4} ?
22) How many grams of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ can be formed from 390.0 g of KMnO_{4} ?
23) How much $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{~g})$ is needed to produce 27.00 g of water?
$\underline{\mathbf{2}} \mathrm{HBrO}_{3}+\mathrm{Ba}(\mathbf{O H})_{2} \rightarrow \mathbf{B a}\left(\mathrm{BrO}_{3}\right)_{2}+\underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$
24) Determine moles of barium bromate $\left[\mathrm{Ba}\left(\mathrm{BrO}_{3}\right)_{2}\right]$ that can be prepared from 7.000 moles each of HBrO_{3} and $\mathrm{Ba}(\mathrm{OH})_{2}$. (Hint: calculate two separate answers)
$\underline{16} \mathrm{Na}+\mathrm{S}_{8} \rightarrow \underline{8} \mathrm{Na}_{2} \mathrm{~S}$
25) Determine moles of $\mathrm{Na}_{2} \mathrm{~S}$ that can be prepared by the reaction of 0.2240 moles of sodium with excess sulfur.
